Artificial Intelligence, Data Science in the Industrial World, Speech Synthesis

matveeva.yulia@huawei.com

Yulia MATVEEVA

<ロ> (日) (日) (日) (日) (日) (日) (1/59)

23rd May 2019

2/59

Table of contents

- 2 Data Science in the Industrial World
- I Huawei VoiceKit Project and Personal Assistant
- 4 Speech Synthesis
- 5 Job Opportunities at Huawei, Russia

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

Self-introduction : education

Education (2011)

 SPbSU, mathematical-mechanical faculty, department of <u>statistical modeling</u>

matveeva.yulia@huawei.com

Yulia MATVEEVA

Artificial Intelligence, Data Science, Speech Synthesis

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

Self-introduction : education

PARIS DIDEROT

Education (2016)

 Universite Paris-Diderot (Sorbonne Paris 7), department of Linguistics + department of Computer Science, Master's degree in

Computational Linguistics and Natural Language Processing

www.univ-paris-diderot.fr

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

◆□ > ◆□ > ◆豆 > ◆豆 > 豆目目 のへで

5/59

Self-introduction : education

Education (2017)

LIMSI-CNRS + Telecom Paris-Tech (Paris, France) Research Assistant

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

Self-introduction : professional experience

Professional experience

 (2011 – 2013) Analyst-programmer, LLC "AdRiver" (Russia), automatic ad targeting (recommender systems).

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

Self-introduction : professional experience

Professional experience

- (2011 2013) Analyst-programmer, LLC "AdRiver" (Russia), automatic ad targeting (recommender systems).
- (2016) Data Scientist, LLC "Object'Ive" (France), automatic trend detection, natural language generation.

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

Self-introduction : professional experience

Professional experience

- (2011 2013) Analyst-programmer, LLC "AdRiver" (Russia), automatic ad targeting (recommender systems).
- (2016) Data Scientist, LLC "Object'Ive" (France), automatic trend detection, natural language generation.
- (2017 2018) Data Analyst, EPAM Systems (Russia), recommender systems, extracting structure from unstructured textual documents.

◆□ > ◆□ > ◆豆 > ◆豆 > 豆目目 のへで

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

Self-introduction : professional experience

Professional experience

- (2011 2013) Analyst-programmer, LLC "AdRiver" (Russia), automatic ad targeting (recommender systems).
- (2016) Data Scientist, LLC "Object'Ive" (France), automatic trend detection, natural language generation.
- (2017 2018) Data Analyst, EPAM Systems (Russia), recommender systems, extracting structure from unstructured textual documents.
- (2019 ?) Data Scientist, Huawei (Russia), speech synthesis.

◆□ → ◆□ → ◆三 → ◆三 → ●□ ● ● ●

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

What about you?

 Faculty? Specialty? Year? 	What about you?	
	Faculty?	
Year ?	Specialty ?	
	Year ?	

<ロ> <0><</p>

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

What about you?

What about you?

- Faculty?
- O Specialty?
- Year?
- Operation Department?

◆□ > ◆□ > ◆豆 > ◆豆 > 豆目目 のへで

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

What about you?

What about you?	
Faculty?	
Operative Specialty ?	
Year ?	
Oppartment?	
PhD?	

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の < ⊙

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

What about you?

What about you? Faculty?

- O Specialty?
- Year?
- Operation Department ?
- PhD?
- Machine Learning? Courses online? Yandex courses?

◆□ > ◆□ > ◆豆 > ◆豆 > 豆目目 のへで

Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei, Russia

What about you?

What about you? Faculty? Specialty? Year? Department? PhD? Machine Learning? Courses online? Yandex courses? www.kaggle.com?

◆□ > ◆□ > ◆豆 > ◆豆 > 豆目目 のへで

- 2 Data Science in the Industrial World
- 3 Huawei VoiceKit Project and Personal Assistant
- 4 Speech Synthesis
- 5 Job Opportunities at Huawei, Russia

9/59

Data Science

What is Data Science?

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

◆□ > ◆□ > ◆豆 > ◆豆 > 豆目目 のへで

9/59

Data Science

What is Data Science?

• Hypothesis testing : study the nature of the data.

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

◆□ > ◆□ > ◆豆 > ◆豆 > 豆目目 のへで

9/59

Data Science

What is Data Science?

- Hypothesis testing : study the nature of the data.
- Ø Machine learning :

9/59

Data Science

What is Data Science?

- Hypothesis testing : study the nature of the data.
- Machine learning :
 - Extract structure from the data; explain the data.

◆□ → ◆□ → ◆三 → ◆三 → ●□ ● ● ●

9/59

Data Science

What is Data Science?

- Hypothesis testing : study the nature of the data.
- Machine learning :
 - Extract structure from the data; explain the data.
 - Learn to predict the missing data.

Machine Learning (Artificial Intelligence)

Machine Learning

 $\begin{array}{l} \underline{Observations} : \{X_i, y_i\}_{i=1}^{N} : \textbf{training corpus.} \\ \underline{Model} : y = F_{\theta}(x), F_{\theta} \in \mathcal{F}. \\ \underline{Quality \ criterion} : Q(F_{\theta}, \{X_i, y_i\}_i). \\ Example : Q(F_{\theta}, \{X_i, y_i\}_i) = \sum_{i=1}^{N} (F_{\theta}(X_i) - y_i)^2 \\ \underline{Training} : optimisation \ of \ the \ quality \ criterion. \\ \beta_* = \arg\min_{\theta} Q(F_{\theta}, \{X_i, y_i\}_i) \\ \underline{New \ observations} : \{X'_i\}_{i=1}^{N}. \\ \underline{Inference} : \hat{y}'_i = F_{\beta_*}(X'_i). \end{array}$

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

The Job of a Data Scientist : what it is NOT

Real programmers code in binary.

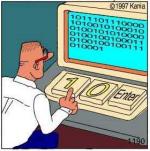

(Usually) Data Science is NOT about

Ο.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

The Job of a Data Scientist : what it is NOT

Real programmers code in binary.


(Usually) Data Science is NOT about

- Complex program architecture :
 - designing an hierarchy of (OOP) classes;
 - implementing patterns of complex inter-communication

between program modules.

The Job of a Data Scientist : what it is NOT

Real programmers code in binary.

(Usually) Data Science is NOT about

• Implementing classical algorithms from scratch... in C.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

The Job of a Data Scientist : what it is NOT

Real programmers code in binary.

(Usually) Data Science is NOT about

• Designing algorithms from scratch, proving theorems, ...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

СТАНОВИСЬ ДАТА

ТАК ТЫ ЖЕ ПРОСТО РАНЛОМНО

ПОДБИРАЕШЬ КОЭФФИЦИЕНТЫ ПОКА КРОСС-ВАЛИДАЦИЯ НЕ ДАСТ НОРМАЛЬНЫЙ РЕЗУЛЬТАТ

САЕНТИСТОМ КАК Я

The Job of a Data Scientist

ПИТОНИСТАМ МАЛО ПЛАТЯТ...

ЭТО ЗАЧЕМ? БУДЕШЬ РАЗРАБАТЫВАТЬ ИСКУССТВЕННЫЙ ИНТЕЛЕКТ ЗА ТООК/СЕК

matveeva.yulia@huawei.com

Yulia MATVEEVA

Artificial Intelligence, Data Science, Speech Synthesis

ТЫ ЧЁ ПЁС, Я МАТЕМАТИК

ି 12/59

The Job of a Data Scientist : what it is

matveeva.yulia@huawei.com

Yulia MATVEEVA

Artificial Intelligence, Data Science, Speech Synthesis

The Job of a Data Scientist : what it is

• Translating business needs into math problems.

matveeva.yulia@huawei.com

Yulia MATVEEVA

Artificial Intelligence, Data Science, Speech Synthesis

The Job of a Data Scientist : what it is

- Translating business needs into math problems.
- Chosing appropriate models.

The Job of a Data Scientist : what it is

- Translating business needs into math problems.
- Chosing appropriate models.
- Data processing :
 - Validating, cleaning, filtering, transforming, ...

The Job of a Data Scientist : what it is

Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

The Job of a Data Scientist : what it is

• Playing lego :

matveeva.yulia@huawei.com

Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

The Job of a Data Scientist : what it is

- <u>Playing lego</u> :
 - combining algorithms together;

The Job of a Data Scientist : what it is

- <u>Playing lego</u> :
 - combining algorithms together;
 - constructing neural networks in NN frameworks (tensorflow, pytorch, ...).

The Job of a Data Scientist : what it is

- <u>Playing lego</u> :
 - combining algorithms together;
 - constructing neural networks in NN frameworks (tensorflow, pytorch, ...).
- Tuning hyper-parameters.

The Job of a Data Scientist : what it is

• <u>Setting up experiments + analyzing the results</u>.

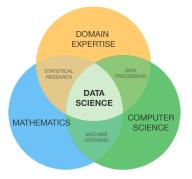
Yulia MATVEEVA

Artificial Intelligence, Data Science, Speech Synthesis

The Job of a Data Scientist : what it is

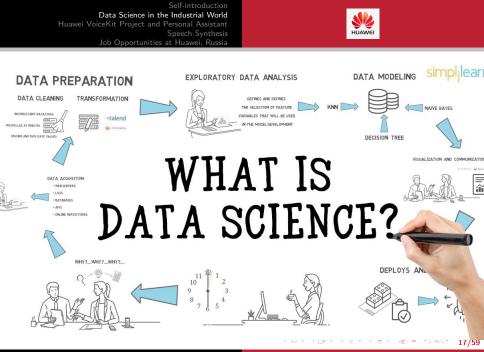
- <u>Setting up experiments + analyzing the results</u>.
- <u>Problem solving, learning quickly,</u> adapting to a changing environment.

matveeva.yulia@huawei.com


Yulia MATVEEVA

Artificial Intelligence, Data Science, Speech Synthesis

15/59


The Job of a Data Scientist : what it is

www.datanami.com/2018/ 09/17/ improving-your-odds-withdata-science-hiring

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

16/59

matveeva.yulia@huawei.com

Yulia MATVEEVA

Artificial Intelligence, Data Science, Speech Synthesis

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

18/59

The Job of a Data Scientist

Why You Are Good for It

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

18/59

The Job of a Data Scientist

Why You Are Good for It

• Understanding mathematics !

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

18/59

The Job of a Data Scientist

Why You Are Good for It

- Understanding mathematics !
- Knowing computer science.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

18/59

The Job of a Data Scientist

Why You Are Good for It

- Understanding mathematics !
- Knowing computer science.
- Problem solving !

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

19/59

Machine Learning (Artificial Intelligence)

Data Science in the Industrial World : some examples.

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

(ロ) (日本) (日本) (日本) (日本) (日本)

20/59

Recommender Systems

Problem Statement

- Users $\{q_i\}_{i=1}^n$, items $\{w_j\}_{j=1}^m$.
- History of user-item interaction.
- What items do we recommend to user *u_i* in a particular setting?

Recommender Systems

Matrix X (n x m) of user-item ratings.

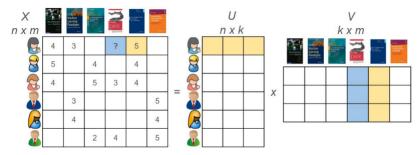
X n x m		Machine Learning Paradigms		2007k	Eller Martinetter Recommender Recommender	
	4	3		?	5	
	5		4		4	
8	4		5	3	4	
		3				5
8		4				4
-			2	4		5

- Large dimensionality.
- Zeros vs. missing values.

(ロ) (部) (E) (E) (E) (21/59)

イロト イロト イヨト イヨト 三日 りへで

22/59


Recommender Systems

Simple Solution : Collaborative Filtering

Recommender Systems

<u>Simple Solution</u> : <u>Collaborative Filtering</u> Matrix Factorization (SVD).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

22/59

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

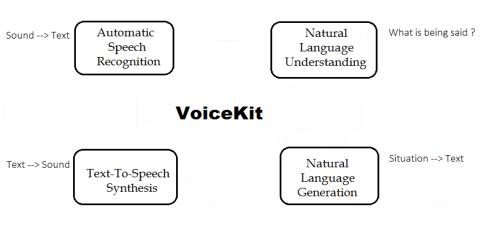
23/59

Recommender Systems : Collaborative Filtering

Singular Value Decomposition (SVD) :

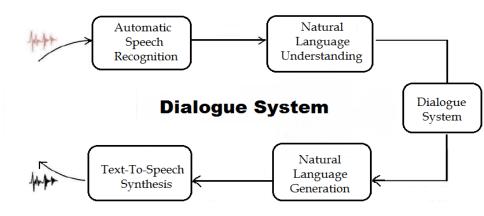
$$\begin{split} \mathbb{X} &= U \Sigma^T V'^T, \\ V' & - \text{ orthonormal basis for } span(\{X_{[1,\cdot]}, \dots, X_{[n,\cdot]}\}), \\ U & - \text{ orthonormal basis for } span(\{X_{[\cdot,1]}, \dots, X_{[\cdot,m]}\}), \\ \hat{\mathbb{X}}_k &= U_{[\cdot,1:k]} \Sigma_{[1:k,1:k]}^T V_{[\cdot,1:k]}^{'T} = \\ &= \arg\min_{rank(\mathbb{A})=k} ||\mathbb{X} - \mathbb{A}||. \end{split}$$

(□) (0) (24/59

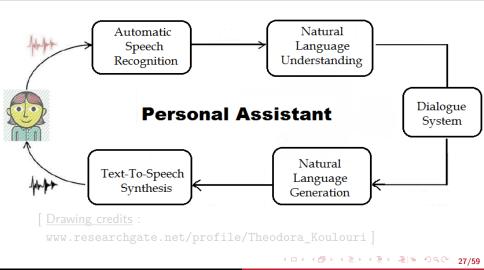

- 2 Data Science in the Industrial World
- Iuawei VoiceKit Project and Personal Assistant
- Operation of the second state of the second
- 5 Job Opportunities at Huawei, Russia

<ロ> <団> <団> < 三> < 三> < 三</p>

25/59


Huawei VoiceKit Project

イロト イロト イヨト イヨト 三日 りへで


Huawei VoiceKit Project

26/59

Huawei VoiceKit Project

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

28/59

Machine Learning Seminars [Huawei]

Natural Language Processing and more : https://sites.google.com/view/nlp-seminars/main

Talk on Speech Synthesis : 8th of June.

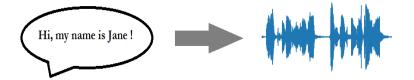
▲ロト ▲圖ト ▲目ト ▲目ト 三目目 のへで

29/59

- 2 Data Science in the Industrial World
- 3 Huawei VoiceKit Project and Personal Assistant

4 Speech Synthesis

5 Job Opportunities at Huawei, Russia



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

30/59

Text-To-Speech : problem statement

Create a system that is able to transform arbitrary text in a *given language* to speech in the form of an **audio waveform**.

<ロト < ② > < 臣 > < 臣 > 三国 の Q (* 31/59)

- Essentially a **sequence to sequence** problem with a highly correlated output sequence :
 - strong sequential dependencies;
 - each (output) point taken individually is meaningless (it's a vibration that is encoded).

<ロト < ② > < 臣 > < 臣 > 三国 の Q (* 31/59)

- Essentially a **sequence to sequence** problem with a highly correlated output sequence :
 - strong sequential dependencies;
 - each (output) point taken individually is meaningless (it's a vibration that is encoded).
- Need to take particularities of human perception of sound into account :

<ロト < 部 > < E > < E > E = のへで 31/59

- Essentially a **sequence to sequence** problem with a highly correlated output sequence :
 - strong sequential dependencies;
 - each (output) point taken individually is meaningless (it's a vibration that is encoded).
- Need to take particularities of human perception of sound into account :
 - it is logarithmic;

<ロト < 部 > < E > < E > E = の < 31/59

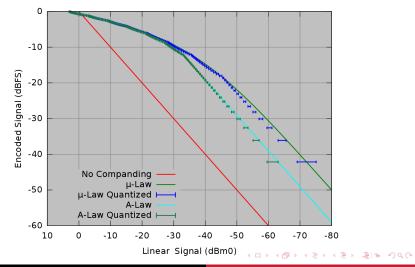
- Essentially a **sequence to sequence** problem with a highly correlated output sequence :
 - strong sequential dependencies;
 - each (output) point taken individually is meaningless (it's a vibration that is encoded).
- Need to take particularities of human perception of sound into account :
 - it is logarithmic;
 - what we percieve as pitch?

(ロ) (部) (E) (E) (E) (32/59)

Human perception in speech synthesis

Standard techniques

Human perception of sound is logarithmic :


Mu-law quantization, convert to dB.

2 High/low frequencies :

- Pre-emphasis (high-pass filter) : $y_t \alpha y_{t-1}$.
- De-emphasis (low-pass filter).

Non-uniform quantization

33/59

34/59

Text-To-Speech (TTS) : system architectures

Families of Text-To-Speech Systems

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

・ロト (日本)(日本)(日本)(日本)(日本)(日本)

34/59

Text-To-Speech (TTS) : system architectures

Families of Text-To-Speech Systems

• Concatenative unit-selection.

▲ロト ▲圖ト ▲目ト ▲目ト 三目目 のへで

34/59

Text-To-Speech (TTS) : system architectures

Families of Text-To-Speech Systems

- Concatenative unit-selection.
- End-2-end speech synthesis (neural).

▲ロト ▲圖ト ▲目ト ▲目ト 三目目 のへで

34/59

Text-To-Speech (TTS) : system architectures

Families of Text-To-Speech Systems

- Concatenative unit-selection.
- End-2-end speech synthesis (neural).
- Statistical Parametric Speech Synthesis (SPSS) (neural or non-neural).

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

35/59

Speech synthesis : pre-processing of the training data

• Big corpus of { text + speech } :

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

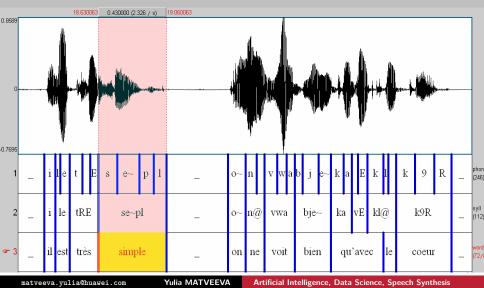
35/59

Speech synthesis : pre-processing of the training data

Big corpus of { text + speech } : usually aligned by sentences.

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0


35/59

Speech synthesis : pre-processing of the training data

- Big corpus of { text + speech } : usually aligned by sentences.
- Split into units (segments) + align.

Concatenative unit-selection : training

<ロト < 部 > < E > < E > E = のへで 37/59

Concatenative unit-selection : training

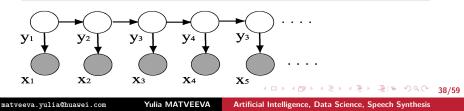
Phoneme alignment : how?

Phoneme-2-letter alignment : EM-like algorithm :

- A_{ij} : phoneme-to-letter associations
- Start from A_{ij}^0 sentence/word alignment : increment each a_{ij} if this (phoneme, letter) pair occurs in the same sentence/word.

• Given A_{ij}^k : find the phone-2-letter alignmemnt that maximizes the association (path-finding algorithm).

Waveform segmentation.



Concatenative unit-selection : model

Hidden Markov Model

 $y_0, ..., y_n$ — units = speech segments = pieces of waveforms (taken from a database $\mathcal{Y} = \{y'_j\}_{j=1}^N$), $x_0, ..., x_n$ — linguistic features corresponding to segments of text (letters, phonemes, duration, accentuation, left/right context, ...).

$$P(y_t, y_{t-1}, \dots, y_0 \mid x_t, \dots, x_0) = \frac{P(y_0) \prod_t P(x_t \mid y_t) P(y_t \mid y_{t-1})}{P(x_t, \dots, x_0)}$$

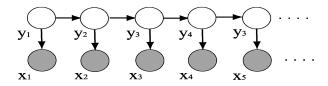
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

39/59

Concatenative unit-selection : training

• Transition and emission cost estimation (\simeq HMMs).

$$P(y_t, y_{t-1}, \ldots, y_0 \mid x_t, \ldots, x_0) \propto \prod_t P(x_t \mid y_t) P(y_t \mid y_{t-1}).$$


(is proportional to)

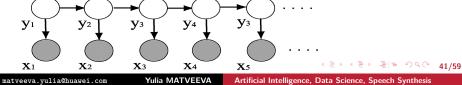
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

Concatenative unit-selection : synthesis

Viterbi search (over a pruned search space).

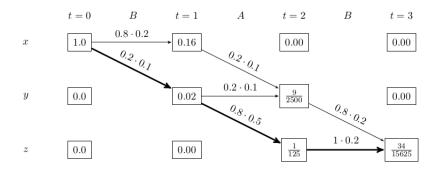
Viterbi algorithm

$$\hat{P}(y_{0}) \prod_{t=1}^{n} \hat{P}(x_{t}|y_{t}) \hat{P}(y_{t}|y_{t-1}) \xrightarrow{\{y_{1},\dots,y_{n}\} \in \mathcal{Y}^{n}} \max,$$


$$P_{k-1}^{*} = \max_{y_{0},\dots,y_{k}} \hat{P}(y_{0},\dots,y_{k-1} \mid x_{0},\dots,x_{k-1}),$$

$$\{\hat{y}_{0},\dots,\hat{y}_{k-1}\} = \arg\max_{y_{0},\dots,y_{k}} \hat{P}(y_{0},\dots,y_{k} \mid x_{0},\dots,y_{k-1}),$$

$$\{\hat{y}_{0},\dots,\hat{y}_{k}\} =$$


$$= \arg\max_{y_{k}} \hat{P}(\hat{y}_{0},\dots,\hat{y}_{k-1},y_{k} \mid x_{0},\dots,x_{k}) =$$

$$= \arg\max P_{k-1}^{*} \hat{P}(x_{k}|y_{k}) \hat{P}(y_{k}|\hat{y}_{k-1}). \quad (1)$$

Viterbi algorithm

イロト イロト イヨト イヨト 三日 りへで

<ロト < ② > < 臣 > < 臣 > 王国 の Q @ 43/59

Concatenative unit-selection : pros and cons

Pros

- Big representative corpus \Rightarrow outperforms all other approaches (intelligibility and naturalness).
- Generally easy (fast) training.

Cons

- Large model size (data base), inadequate for offline mode.
- Low flexibility, ability to adapt to new contexts / new tasks.

44/59

Concatenative unit-selection in our life

Production examples

Siri (Apple) (2016-2017) :

(ロ) (部) (E) (E) (E) (44/59)

Concatenative unit-selection in our life

Production examples

Siri (Apple) (2016-2017) :

hybrid unit-selection approach

with deep-learning based emission/transition cost estimation.

Concatenative unit-selection in our life

Production examples

Siri (Apple) (2016-2017) :

hybrid unit-selection approach

with deep-learning based emission/transition cost estimation.

See for yourself!

- Find a pronunciaton dictionary.
- Open-source phonemizer (type "python phonemizer" in Google;)).
- Festvox / Flite :

open-source toolkit

by the Carnegie Mellon University's speech group.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

45/59

Self-introduction Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant **Speech Synthesis** Job Opportunities at Huawei. Russia

Text-To-Speech (TTS) : end-2-end speech synthesis

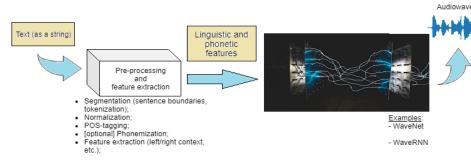
matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

イロト (周) (日) (日) 日日 のへで

Self-introduction Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei. Russia

Text-To-Speech (TTS) : end-2-end speech synthesis

Photo credits :


www.unsplash.com/search/photos/electricity

45/59

Audiowave

Text-To-Speech (TTS) : end-2-end speech synthesis

Photo credits :

www.unsplash.com/search/photos/electricity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

(ロ) (部) (E) (E) (E) (7/59)

End-2-end speech synthesis : pros and cons

Pros

- Saves feature-engineering effort.
- In theory very flexible :
 - can be embedded in a multi-tasking neural net;
 - allows for efficient style transfer (voice conversion).

End-2-end speech synthesis : pros and cons

Pros

- Saves feature-engineering effort.
- In theory very flexible :
 - can be embedded in a multi-tasking neural net;
 - allows for efficient style transfer (voice conversion).

Cons

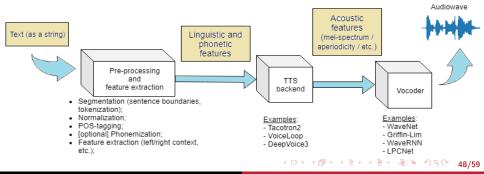
• Time!

End-2-end speech synthesis : pros and cons

Pros Saves feature-engineering effort. In theory very flexible : can be embedded in a multi-tasking neural net; allows for efficient style transfer (voice conversion). Cons Time !

if args.mode == 'synthesis':
 raise ValueError('I don\'t recommend running WaveNet on entire dataset.. The world might end before the synthe

<u>Original WaveNet model</u> : 1 hour to generate 1 second of audio.


<ロト < ② > < 臣 > < 臣 > 王国 の Q @ 47/59

Text-To-Speech (TTS) : parametric speech synthesis

Statistical Parametric Speech Synthesis :

- Extract and model a parametric representation of the speech signal (spectrum, excitation, etc.).
- **②** Reconstruct the waveform from the parametric representation.

Artificial Intelligence, Data Science, Speech Synthesis

▲ロト ▲圖ト ▲目ト ▲目ト 三目目 のへで

Parametric speech synthesis : in production

SPSS synthesis : production examples

Google assistant, Amazon Alexa,

Huawei assistant.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

- 2 Data Science in the Industrial World
- 3 Huawei VoiceKit Project and Personal Assistant
- 4 Speech Synthesis
- 5 Job Opportunities at Huawei, Russia

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

51/59

Huawei is Looking for Talents!

Two Types of Job Opportunities

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

51/59

Huawei is Looking for Talents!

Two Types of Job Opportunities

Saint-Petersburg Research Center : Data Science Engineer.

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

51/59

Huawei is Looking for Talents!

Two Types of Job Opportunities

- Saint-Petersburg Research Center : Data Science Engineer.
- 2 Moscow Research Center : Research Engineer.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

52/59

Self-introduction Data Science in the Industrial World Huawei VoiceKit Project and Personal Assistant Speech Synthesis Job Opportunities at Huawei. Russia

Huawei : jobs at Saint-Petersburg Research Center

Data Science Engineer : Speech Synthesis Team

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

52/59

Huawei : jobs at Saint-Petersburg Research Center

Data Science Engineer : Speech Synthesis Team

• Track the current state-of-the-art in academic research.

▲ロト ▲圖ト ▲目ト ▲目ト 三目目 のへで

52/59

Huawei : jobs at Saint-Petersburg Research Center

Data Science Engineer : Speech Synthesis Team

- Track the current state-of-the-art in academic research.
- Experiment with existing implementations / implement missing components.

Huawei : jobs at Saint-Petersburg Research Center

Data Science Engineer : Speech Synthesis Team

- Track the current state-of-the-art in academic research.
- Experiment with existing implementations / implement missing components.
- Find ways to optimize :
 - model size (minimize);
 - generation speed (minimize).

▲ロト ▲圖ト ▲目ト ▲目ト 三目目 のへで

53/59

Huawei : jobs at Saint-Petersburg Research Center

Data Science Engineer : Speech Synthesis Team

- Adapt to new tasks :
 - model emotions;
 - mode for non-native speakers;
 - voice conversion.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

54/59

Huawei : jobs at Saint-Petersburg Research Center

Contacts

• Me (Yulia MATVEEVA) :

matveeva.yulia@huawei.com, yu125@statmod.ru

• <u>Saint-Petersburg Huawei R&D HR department</u> : chernysheva.yuliya@huawei.com

Huawei : jobs at Saint-Petersburg Research Center

Digital Signal Processing and Speech Synthesis : References (links)

- Rabiner, Schafer, 2009, Theory and Applications of Digital Speech Processing.
- Zen et al., 2009, Statistical Parametric Speech Synthesis.
- Oord et al., 2016, WAVENET: A GENERATIVE MODEL FOR RAW AUDIO.
- Shen et al., 2018, Natural tts synthesis by conditioning wavenet on mel spectrogram predictions.
- Kalchbrenner et al., 2018, Efficient neural audio synthesis.
- Kim et al., 2018, FloWaveNet: A Generative Flow for Raw Audio.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

56/59

Huawei : Saint-Petersburg Research Center

Other Machine Learning teams in Saint Petersburg :

- Automatic Speech Recognition ;
- Natural Language Understanding;
- and others.

Huawei : jobs at Moscow Research Center

Research Engineer : Dialogue Systems

- (Team lead) Find unsolved problems in the field.
- (Team lead) Find ways in which the solution to this problem may help the current Huawei projects.
- Work on research projects in the chosen direction.
- Publish in academic journals and participate in academic conferences.

Contacts

- Team Lead (Irina Piontkovskaya) :
 - linkedin.com/in/irina-piontkovskaya-6b10b0b5
- Moscow Huawei R&D HR department :

drobel.valeria@huawei.com

Huawei : jobs at Moscow Research Center

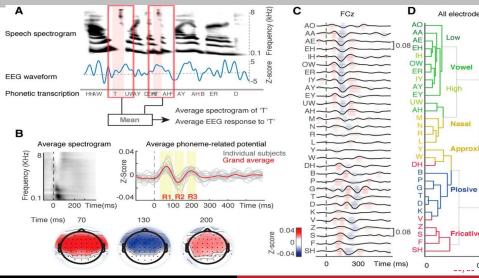
Dialogue Systems : References (links)

- Zhou et al., 2018, The Design and Implementation of Xiaolce, an Empathetic Social Chatbot
- Shah et al., 2018, Building a Conversational Agent Overnight with Dialogue Self-Play
- Artetxe et al., 2019, An Effective Approach to Unsupervised Machine Translation
- Devlin et al., 2018, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- Lample and Conneau, 2019, Cross-lingual Language Model Pretraining

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

59/59

Thank you!


Thank you ! Questions ?

Yulia MATVEEVA matveeva.yulia@huawei.com

matveeva.yulia@huawei.com Yulia MATVEEVA Artificial Intelligence, Data Science, Speech Synthesis

Phonemization

matveeva.yulia@huawei.com

Yulia MATVEEVA

Artificial Intelligence, Data Science, Speech Synthesis

.≣ା≡ ∽ାର୍ଙ 61/59

Other image credits

- journals.plos.org/plosone/article?id=10.1371/ journal.pone.0024516
- http://latlcui.unige.ch/phonetique/easyalign.php
- Bahar Khalighinejad, Guilherme Cruzatto da Silva, and Nima Mesgarani, 2017, Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech, The Journal of Neuroscience, 37(8), pp. 2176 – 2185.
- www.businessinsider.com/ rick-and-morty-review-2015-7?r=US&IR=T
- www.youtube.com/watch?v=X3pa0mcrTjQ
- www.inverse.com/article/ 31728-straitum-causes-anxiety-over-future
- http://www.tamasbedo.com/ checking-poker-graph-can-hurt-results